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A new model-calibration method has been proposed to solve the problems associated with parameter
subset selection and parameter estimation of the activated sludge model (ASM). We propose the use of
a statistical methodology for reasonable parameter selection and parameter estimation that consists of
sensitivity analysis, similarity measures, hierarchical clustering and response surface methods (RSM). The
introduction of effluent quality index (EQI) can reduce all of the outputs of the ASM model into one factor.
The EQI was used to calculate a sensitivity matrix. Then, the hierarchical clustering algorithm was used for
ctivated sludge model number 1 (ASM 1)
ensitivity matrix
imilarity measure
ierarchical clustering
esponse surface method (RSM)

parameter subset selection. This selection was based on a similarity measure using the sensitivity matrix
and was used to reduce the number of model parameters by selecting only one parameter per cluster
group (parameter subset selection step). Lastly, a RSM analysis was conducted in order to determine the
optimal parameter values. This study was conducted in order to develop a new statistical framework that
can greatly reduce the computational effort required to find the optimal solution by reducing the number
of parameters. The experimental results indicated that the calibrated model can improve the prediction

l and
quality of the ASM mode

. Introduction

The activated sludge model number 1 (ASM 1) was developed
y the International Association on Water Quality (IAWQ), and

s known as one of the most effective models for the chemical
xygen demand (COD) oxidation, nitrification and denitrification
rocesses. Dynamic simulation, process design, and control and
rocess optimization are carried out for these processes in wastew-
ter treatment plants (WWTPs) [1,2]. The modeling and calibration
ethods of the ASM model were developed to design and ana-

yze the processes for biological wastewater treatment. The quality
f the prediction, design and control performances of the ASMs
epends on the methods which are used to calibrate their parame-
ers. The default parameters must be calibrated for each individual

WTP, since the model parameters are not considered as univer-
al for all of the activated sludge systems. Several factors contribute
o the need for adjusting the model parameter calibration, includ-

ng differences in plant operation types, biological kinetics, and the
nfluent and sludge characteristics of the treatment plants [3]. The
ignificant drawbacks of the ASM calibration include its large size
nd the complex optimization problem. In addition, these models

∗ Corresponding author. Tel.: +82 31 201 3824; fax: +82 31 202 8854.
E-mail addresses: ckyoo@khu.ac.kr, ChangKyoo.Yoo@biomath.ugent.be

C.K. Yoo).

304-3894/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2010.07.044
the efficiency of the modeling.
© 2010 Elsevier B.V. All rights reserved.

are usually over-parameterized considering the limited availability
of data for most WWTPs [4–6].

The use of advanced model calibration techniques, including the
STOWA [7], BIOMATH [8], Water Environment Research Founda-
tion (WERF) [9] and HSG [10] protocols, has been recommended in
order to solve the problems associated with ASM calibration. These
techniques are used to select important parameters and estimate
those for the plants. The four calibration methods have their own
advantages and disadvantages with regard to the applicability, use-
fulness, accuracy, cost, experimental work and chemical/biological
aspects of the model calibration. Recently, Sin et al. [11,12] criti-
cally compared and reviewed the above four calibration protocols
using the strengths, weakness, opportunities and threats (SWOT)
analysis method. Four protocols may have similarities as well as
differences, such as definition of modeling goal, data confidences,
design of the measurement campaign, influent characterization,
kinetic parameter estimation, and a selection of parameter sub-
set. The differences between the four calibration methods used in
Sin et al. [12] and the proposed method of this study is to focus
on an automatic determination of representative parameter subset
for an over-parameterization problem and then successive opti-

mal parameter estimation by a statistical multiple optimization.
An application point of view, the proposed method is more near to
pragmatic calibration method than a scientific approach, which is
useful in a ASM model calibration in a full-scale plant without an
expert knowledge.

dx.doi.org/10.1016/j.jhazmat.2010.07.044
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:ckyoo@khu.ac.kr
mailto:ChangKyoo.Yoo@biomath.ugent.be
dx.doi.org/10.1016/j.jhazmat.2010.07.044
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There are several problems with the model calibration of the
SM families including identifiability, over-parameterization and
parsity. For example, if the parameters are not identifiable then
ven a low level of noise in the data will result in large variations
n the parameters’ estimated values, and therefore the parameters
annot be estimated accurately [13]. The identifiability of a set of
arameters is determined by the effect of changes in the value of
arameter on the value of output [13]. This effect is represented by
ensitivity vectors. Several methods for parameter selection based
n sensitivity vectors have been proposed in the literature [3,5,11].
ince the experiments are expensive to obtain the concentration of
nfluent for the ASM model at the plants, it is limited the number of
ata sets available. To overcome this problem, a numerical method
or parameter selection was used in this study. First, the number
f parameters to be considered is reduced by grouping parameters
hat could be estimated together. Then, the model calibration is
arried out by considering only one parameter per group for the
arameter subset selection procedure.

The purpose of this study was to develop a statistical framework
or ASM model calibration that can sort ASM model parameters
nto reasonable groups using parameter subset selection and then
stimate the representative parameters using a multiple response
urface method for optimal parameter estimation. One parame-
er per group is considered for the parameter set selection, which
as reduced the size of the combinatorial problem resulting from
large number of parameters. The proposed new methodology
ill find a simultaneous solution to the parameter subset selec-

ion and optimal parameter estimation problems with a reduced
omputational load.

. Materials and methods

Successful parameter estimation depends on parameter identi-
ability that can be determined either analytically or numerically.
nalytical identifiability determines the uniqueness of the solution
erived from parameter estimation while numerical identifiability
ocuses on the stability of the solution [13]. A sensitivity matrix for
utput can be used to find the likelihood of the parameter identifi-
bility [6,13].

.1. Sensitivity analysis

The optimization of the ASM is problematic due to the model
omplexity caused by many components as well as kinetic and
toichiometric parameters. As it is difficult to consider all of the
arameters at the same time when predicting the results [14], sen-
itivity analysis is performed to select the key parameters which are
nfluenced by the removal efficiency. This means helps to improve
he prediction efficiency of the model.

The identifiability of a set of parameters is determined by sensi-
ivity analysis that is the effect of change in the value of a parameter
n the value of output [6]. The relative sensitivity of each param-
ter, j, to each model output, y, and at each time instant, I(Sij), can
e calculated as:

ij =
(

�j

yj

)(
∂yi

∂�j

)
(1)

here ∂yi/∂�j is defined as the absolute sensitivity of the model
utput y to the parameter �j at each time instant. The absolute
ensitivity function can be approximated using a finite difference

ethod. This method is valid only for small changes in the values

f parameters, i.e. a small perturbation factor (��) [6]. Parameters
ith high relative sensitivity are considered to be the most likely
arameters, to have a strong effect that is minimized the modeling
rror.
Materials 183 (2010) 441–447

2.2. Similarity measures

Brun et al. [3] proposed a similarity measure for classifying a set
of parameters which have at least one common property among
the ASM parameters. However, when the sensitivity vectors of the
output and that of the parameter are parallel to each other, the sen-
sitivity measure and collinearity index proposed by Brun et al. [3]
cannot be used. In this study, a similarity measure approach pro-
posed by Chu and Hahn [13] was used to analyze the relationship
between input and output of the ASM parameters. This approach
does not require that the sensitivity matrix is to be nonparallel, but
the angle between the sensitivity vectors should be small. The mea-
sure of the effect of two parameters on the output can be defined
as:

cos �ik = |ST
i Sk|

||Si||2||Sk||2
(2)

where �ik ∈ [0,2�] is the angle between the relative sensitivity
vectors Si and Sk. The term |ST

i Sk| is an inner-product of relative
sensitivity vectors and ||Si|| is the Euclidean norm of the ith column
of relative sensitivity vector S [13]. The value of the similarity mea-
sure can range from 0 to 1. If the value is determined to be 0, then
the parameters are orthogonal and they have a distinct effect on
the output. The parameters can be clustered into groups based on
the values of similarity measures.

2.3. Hierarchical clustering

There are two types of methods used for hierarchical clustering:
the first method is to select the two objects which are all most simi-
lar and group them. The other method selects two objects which are
all most dissimilar and divides them [15]. The methods available in
the literature can be divided into many types based on the degree of
similarity between the two clusters. These include the single link-
age method, complete linkage method, average linkage method,
centroid linkage method, and so on. In addition to the above meth-
ods, bottom-up and top-down methods are also used in hierarchical
clustering. A hierarchical order of repeated division is found when
all of data objects are grouped into the top level that consists of
only one cluster [15].

2.4. Response surface method

The response surface method (RSM) is used to find the rela-
tionship between one or more response variables and a set of
quantitative, experimental variables or factors. This method is often
employed after a few controllable factors that are determined to be
vital have been identified and the factor settings that optimize the
response have been found. This method is usually chosen for an
experiment when the response surface is expected to have some
curvatures in it [16]. In generally, the RSM is defined as the indepen-
dent variable or operating condition that optimizes any response
variable. The optimal solution should be obtained experimentally.
The relationship between the independent variables (x1, x2, . . ., xk)
and the response can be described using the following equation:

y = f (x1, x2, . . . , xk) + ε (3)

where y is the response of the system, f is the unknown response
function, x1, x2, . . ., xk are the independent variables, k is the num-
ber of variables and ε is the modeling error. In most cases, after

completion of the experimental design, the mathematical model
can be written as a second-order regression of response surface
model using Eq. (4):

y = ˇ0 +
∑

ˇixi +
∑

ˇiix
2
i +

∑
ˇijxixj + ε (4)
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random combinations of the parameters. This process included 19
ig. 1. A statistical framework for sensible parameter subset selection and optimal
arameter estimation.

here y is the response variable, xi and xj are the ith and jth
ndependent variables and ˇ0 is a constant coefficient. ˇi is the
egression coefficient for linear terms, ˇii is the regression coeffi-
ient for quadratic terms and ˇij is the coefficient for interaction
erms of independent variables, respectively. In this study, the
esponse surface methodology (RSM) is used to determine the
ptimal parameter estimation, because it can optimize the model
arameters for the output variables [16].

.5. A statistical framework for sensible parameter subset
election
Fig. 1 shows the statistical framework for parameter subset
election and optimal parameter estimation using hierarchical
lustering and the response surface method. First, a data set was

Fig. 2. A layout of the DNR pr
Materials 183 (2010) 441–447 443

gathered from the plant and then normalized to solve the problem
caused by different ranges and units. Second, the sensitivity vectors
of the outputs were calculated with respect to the parameters and
then singular value decomposition (SVD) of the sensitivity matrix
was carried out. Third, the key parameters (ns) are selected based
on the results of the SVD, when the parameter’s sensitivity vectors
are shorter in length than their nominal values. ns is the number of
parameters resulted from SVD. Then, the parameters are clustered
into ng(ng ≥ ns) groups by hierarchical clustering based on the sim-
ilarity measure. ng is the number of parameters which is grouped
by hierarchical clustering. The number of model parameters can
be reduced by determining several groups of parameters for sen-
sible parameter subset selection, where the parameters within a
group are pair-wise indistinguishable. Next, the adequate number
of ng parameters was determined using the root mean squares of
error (RMSE) of the discrepancy between the model of the original
model parameters and the model with a reduced number of param-
eters. For each group, the parameter that has the largest sensitivity
vector was selected as the representative of the group. Then the
key parameters within the ng parameters were selected. The RSM
analysis proposed by Kim et al. [16] was conducted to find the opti-
mal parameter values of the reduced parameter set with respect
to an effluent quality index for the ASM calibration. Finally, the
design for the plant model using the calibrated ASM model was
finalized.

3. Results and discussion

Process data collected from a biological wastewater treatment
plant is used in this study. The plant is located in N city, Korea, and
is operated with an advanced nutrient removal process at the pro-
cess capacity of 43,000 m3/d. This plant utilizes the DNR process,
which is one of the most advanced treatment processes available
for the biological removal of nitrogen and phosphorus at the same
time utilizing the characteristics of the microorganisms. This pro-
cess requires four basins for denitrification and anaerobic, anoxic
and oxic processes as well as a secondary clarifier shown in Fig. 2.
Where the term of RAS is the amount of return activated sludge,
WAS is the amount of wasted activate sludge, Qinf is a flowrate of
influent, Qeff is a flowrate of effluent, NRCY is inner recycle, respec-
tively. The daily mean values between March 9, 2007, and February
29, 2008, were used for the ASM model calibration.

In order to investigate the output effects with respect to various
parameter conditions, a hundred data sets are used by choosing
dynamic parameters of the ASM 1 model and three outputs of total
suspended solids (TSS), chemical oxygen demand (COD) and total
Kjeldahl nitrogen (TKN). In order to understand and analyze the
effects of all of the parameters, the effluent quality index (EQI) is

ocess in the H-WWTP.
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ig. 3. The scree plot of a sensitivity matrix using singular value decomposition.

sed. The EQI represents an index which combines many effluent
omponents into only one index [17,18].

In this study, since the experimental values of biochemical oxy-
en demand (BOD) component of the effluent is not obtained, the
QI equation needed to be adjusted and it resulted the following
q. (5):

QI = (ˇTSSTSSe + ˇCODCODe + ˇTNTNe) × Qe (5)

here the ˇ factor represents the weights of the different types of
ffluent and the subscript e indicates the type of effluent. We used
he following values proposed by Copp [17] ˇTSS = 2, ˇCOD = 1 and
TN = 20 in this study. The data set consisted of 19 model param-
ters and the EQI was normalized during a pre-process step. Then
he sensitivity matrix is calculated using a relative sensitivity. This

atrix was analyzed using SVD in order to determine the value ns

nd a scree plot is used as shown in Fig. 3. There are no specific rules
r regulations for determining ns. However, it is advised that if there
s a gap of an order of magnitude or more between the singular val-
es, then it is appropriate to choose the number of parameters to
e estimated that is equal to the number of singular values that
re larger than the predetermined cutoff value [13]. Following the
bove method, ns is determined to be 4 as it is clear from Fig. 3.

Next, the lengths of the sensitivity vectors were analyzed in
rder to select the meaningful parameters. The lengths of the
ensitivity vectors were limited to the value less than 5% of the
argest vector value in this study. Table 1 shows the parameter
election results based on the 5% limited lengths of sensitivity
nalysis, where the most sensitive parameter among all param-
ters is the autotrophic decay rate, bA. The correction factor for
he anoxic growth of heterotrophy, �g, and the ammonia half-
aturation coefficient (HSC) for the autotrophs, KNH, showed similar
ensitivity in the output of the EQI. On the other hand, the HSC
or heterotrophs, KS, was very similar to the oxygen HSC for
utotrophs, KOA. Only six parameters had a value higher than 5%.
owever, two parameters (	A and KX) had values close to 5% of

he largest sensitivity value. Therefore, a total of eight parameters
ere selected for the cluster analysis. These parameters are the
ass N/mass COD of the products in biomass iXP, the correction

actor for anoxic growth of heterotrophy, �g, the ammonia HSC for
utotrophs, KNH, the autotrophic decay rate, bA, the autotrophic
aximum specific growth rate, 	A, the HSC for the hydrolysis of
he slowly biodegradable substrate, KX, the correction factor for
noxic hydrolysis �H and the fraction of the biomass yielding par-
iculate products fp. In this study we were able to reduce the number
f parameters to eight groups (eight parameters) out of a total
f 19 parameters in the ASM model. This result reduced the size Ta
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Fig. 4. The dendrogram of the hierarchical clustering of eight parameters in the ASM
model.

Table 2
ANOVA results of the linear term of the RSM model in the effluent quality index.

Source DF Seq SS Adj SS Adj MS F P

Regression 8 346.76 346.76 43.3455 0.47 0.873
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Table 4
Modeling results of the calibrated ASM model with the different number of groups.

uating the performance of WWTP and does not have any unit.
The terms iXP is the mass N/mass COD of the products in biomass
(g N/g COD), �g is the correction factor for anoxic growth of het-
erotrophy (no unit), bA is the autotrophic decay rate (1/d) and KNH
is the ammonia HSC for autotrophs (g NH3-N/m3), respectively.
Linear 8 346.76 346.76 43.3455 0.47 0.873
Residual error 91 8348.76 8348.76 91.7446

Total 99 8695.52

f the combinatorial problem which involved a large number of
arameters.

Fig. 4 is a dendrogram of the hierarchical clustering of the eight
SM parameters which are determined in the third step of the pro-
osed method. It can be concluded that the similarity values of the
ight parameters were very close, because their sensitivity vectors
re almost parallel [13]. The diagram illustrates how the selection of
he similarity value influenced the number of group, i.e. an increase
n similarity values for the system led to an increase in the number
f groups.

In order to determine the value of ng, the response surface
ethod (RSM) was carried out for the linear model with eight

arameters. Table 2 shows the analysis results for the variance of
he linear RSM model in the EQI, where DF is the degrees of free-
om, Seq SS is the sequential sum of squares, Adj SS is the adjusted
um of the squares, Adj MS is the adjusted mean square, F is the
-statistics and P is the probability which is determined using the
-statistics. The linear model determined is not to be significant,
ince the P-value of the linear term is 0.873 over 0.05.

However, due to the characteristics of the microorganism, each
arameter influenced the other parameters. Therefore, polynomial
odels that take into consideration the interaction and quadratic
ffects among the parameters are used instead of the linear model.
able 3 shows the analysis of variance (ANOVA) results of the poly-
omial RSM model in the EQI. In this model the P-value of the linear
erm is 0.965, the square term is 0.969 and the interaction term is
.811.

able 3
NOVA results of the polynomial RSM model in the effluent quality index.

Source DF Seq SS Adj SS Adj MS F P

Regression 44 3056.05 3056.05 69.456 0.68 0.908
Linear 8 346.76 241.68 30.21 0.29 0.965
Square 8 599.47 232.36 293.045 0.28 0.969
Interaction 28 2109.81 2109.81 75.351 0.73 0.811
Residual error 55 5639.47 5639.47 102.536

Total 99 8695.52
No. of groups 3 4 5 6 7 8

Least similarity 1.3791 1.3876 1.3697 1.2969 1.2788 1.1724
RMSE 180.2 171.8 229.8 246.5 192.8 7.5

In order to determine the modeling efficiency, the coefficient
of each parameter was substituted for each parameter that repre-
sented groups 3, 4, 5, 6, 7 and 8. Then the residual mean square of
the error (RMSE) was calculated, which is the difference between
the actual value and the predicted value, and is represented by the
following equation:

RMSE =
√∑n

i=1(Yi = 

Yi)

2

n − 1
(6)

where Yi is a real value,


Yi is a predicted value and n is the number

of experiments. For example, if 3 groups were selected, then the
number of parameters in each group was 3: iXP, bA, and �g. Consid-
ering the tradeoff between the model efficiency and the number
of parameters, four groups (ng) were selected in this study. These
parameters are iXP, bA, �g and KNH.

Table 4 shows the modeling results of the calibrated ASM model
with the varied number of groups. The RMSE values in Table 4
changed in accordance with the varying number of groups, where
the RMSE value was the smallest when there were eight groups.
It was also noted from out results (not shown in the table) that
although the number of groups was increased, the RMSE value by
model was not decreased. However, it is a general trend that the
RMSE values are usually smaller when there are larger groups.

As a final step, we selected ns parameters within the ng param-
eters. Since ns is same as ng, four parameters were selected as key
parameters: iXP, bA, �g and KNH. In order to estimate a value for each
key parameter, RSM was used for the final parameter estimation.
The polynomial model containing linear, square and interaction
terms for the four parameters is shown as follows:

EQI = (−1142.1 × iXP) + (32 × �g) + (−7265 × bA) + (−21.6 × KNH)

+ (8066.3 × i2XP) + (−4.8 × �2
g) + (77377.4 × b2

A)

+ (−1.1 × K2
NH) + (−803.9 × iXP × �g) + (63387.9 × iXP × bA)

+ (62.2 × iXP × KNH) + (955 × �g × bA) + (10.7 × �g × KNH)

+ (1621.4 × bA × KNH) (7)

where effluent quality index (EQI) is an integrated index for eval-
Fig. 5. The response surface plot of the effect of iXP and bA on the effluent quality
index (EQI).
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ig. 6. Comparison of actual results to the simulated results using the default and c
efault model; (b) time series plot of the actual data and simulated data using the
ctual data versus simulated data using the calibrated model.

The model confirms that the square terms of iXP and bA have the
ost sensible influence on the effluent quality index (EQI). Fig. 5

hows the effect of the two effective variables, iXP and bA (the other
wo parameters, KNH and �g, were kept constant) on the response
urface contours of the effluent quality index. The response surface
lot can be used to determine the operation variables that opti-
ize any of the response variables. This result is based on several

bjectives which determine the optimal solution by carrying out
he minimum number of experiments [16]. Fig. 5 indicates that the
QI decreased when the value of iXP increased. However, the EQI
ncreased when the value of iXP increased. The slope of the effect of
A was higher than that of iXP. This result is reasonable when com-
ared to Eq. (7). When the value of iXP was around 0.08, the EQI had
he smallest value and when the value of bA was around 0.005, the
QI also had the smallest value. These results indicate that the opti-
um range for the two parameters of iXP and bA is approximately

.08 and 0.005, respectively.
The optimal values for the four parameters are estimated based

n the direction in which the EQI is minimized. With the mini-
um value of EQI close to the D-optimality of 92.08, the values

f the four parameters were estimated to be: iXP = 0.08, bA = 0.006,
g = 0.95 and KNH = 0.63. These results are different from the default
alues of each of the parameters in the literature where �g = 0.8 and
NH = 1.0.

Then, we applied the calibration parameters to describe and
imulate the ASM process, and then compared those results to
he results when using default parameters. Fig. 6 shows the EQI
esults compared, when using default parameters and calibrated
arameters in the simulation data. The black circles indicate the
ctual values and the black lines represent the simulation values
y using the calibrated parameters. In Fig. 6(a) and (b), we can
onfirm that all of the simulated result has higher value than real

easured values. The results shown in Fig. 6(c) and (d) indicate that

he relationship between the actual values and simulation values
an be confirmed directly. When the simulation value was closer to
he real value, the linear relationship showed a 45◦ angle between
hem. In this plot, the linear relationship did not accurately display
ted parameters: (a) time series plot of the actual data and simulated data using the
ated model; (c) actual data versus simulated data using the default model; and (d)

a 45◦ angle, but it represented a linear relationship between the
actual value and simulation value.

For a more accurate comparison, we applied RMSE value to each
simulation result. The RMSE value of EQI using calibrated parame-
ters was 101.23 whereas the RMSE value using default parameters
were 108.72, respectively. The errors between the real data and the
calibration data can be less than those when the default values of
parameters are used.

The reduction in the number of parameters by the parameter
subset greatly reduced the search space in the ASM model param-
eter calibration. However, the RMSE values were slightly different
between the eight and four parameters selected using the clus-
tering and RSM. The results shown in Table 3 indicate that the
calibrated model with the reduced parameter subset is still valid
for model predictions and still it maintains its modeling efficiency.
Table 4 indicates that the modeling results of the calibrated model
are more accurate than those of the model using default param-
eters. If there are a large number of parameters in the model,
ASM 2d or ADM for example, then the proposed method can be
used as a very effective tool, since it can systematically select the
parameter subset while maintaining the model prediction per-
formance. This method reduces the size of the parameter search
space.

4. Conclusion

This study proposes a new methodology for statistical model
calibration that can sort the sensible parameter subsets and esti-
mate the parameters using a multiple response surface of an
effluent quality index. The selected parameters were clustered
using the proposed method, because they had a similar effect on
the model outputs. Only one parameter per group with the largest

sensitivity vector was chosen as the representative parameter. The
reduction in the number of parameters in the parameter subset
greatly reduced the search space in the ASM model parameter cal-
ibration. A case study showed that the 19 total parameters of the
ASM model were reduced to a set of eight parameters and then
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set of four parameters were identified from among the eight
arameters by clustering. The optimal values of the four parameters
ere estimated using the multiple response method. The pro-
osed statistical framework resulted in very little computational
ffort to find an optimal solution in comparison to the traditional
alibration method which searches the full set of the total param-
ters.
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